BIODATA of Siddhartha Sengupta

- 1. Name and Full Correspondence Address: Siddhartha Sengupta
- 2. Email(s) and Contact number(s): siddhartha@iitism.ac.in, 9471192418
- 3. Institution: IIT(ISM) Dhanbad, Jharkhand 826004
- 4. **Date of Birth:** 21 January 1984
- 5. **Gender:** Male
- 6. Category: General
- 7. Whether differently able: No
- 8. Academic Qualifications:

Sl. No.	Degree	Year	Subject	University/Institution
1	B. TECH	2006	Chemical Engineering	Heritage Institute of Technology, West Bengal University of Technology, Kolkata
2	ME	2008	Chemical Engineering	Jadavpur University, Kolkata
3	PhD	2015	Chemical Engineering	Indian Institute of Technology Kanpur, Kanpur

9. Ph.D. thesis title, Institute/Organization/University, Year of Award.

Dissertation Title: CO_2 reforming of CH_4 over unmodified and modified Ni/Al₂O₃ catalysts Institute: Indian Institute of Technology Kanpur Year of Award: 2015

10. Work Experience:

S.No.	Positions held	Name of the Institute	From	То
01	Assistant Professor	IIT(ISM) Dhanbad	July 2014	April 2022
02	Associate Professor	IIT(ISM) Dhanbad	April 2022	Till date

Specialization and Expertise: Research in our group is resting on understanding the catalytic activity and selectivity issues for supported metal and metal oxide and related heterogeneously catalysed systems. Our current research interest is in the broad area of heterogeneously catalysed reactions involving hydrocarbons for which the effects of various catalyst parameters were studied. A judicious choice of characterization techniques complimented with reactivity data assists in the understanding why some of the parameters do or do not have an effect on the catalytic activity and selectivity. Designing a catalyst using modifiers has also been undertaken and from the structure-reactivity relationships and statistical methodologies, an optimum catalytic composition was determined. Specifically, the reactions that are under consideration: (i) Dry Reforming of Methane to produce syngas and (ii) CO₂ hydrogenation for the production of Methanol and Methane. Future studies will involve other hydrocarbon-based reactions and the utilization of simultaneous *in situ* characterization and reaction techniques, coined as *Operando* spectroscopy, for the understanding of some heterogeneously catalyzed reactions.

11. Professional Recognition/ Award/ Prize/ Certificate, Fellowship received by the applicant

Sl.No	Name of the Award	Awarding Agency	Year
01	-	-	-

S.	Authors	Title	Name of the	Vol.	Page	Year
No.			Journal			
01						
02	S C Nayak, S Sengupta, G Deo	Effect of Contact Time on Carbon Deposition and Catalytic Activity of Nickel Alumina Catalysts for Dry Reforming of	Chemistry Select	9(27)	e2023 04841	2024
03	V.V.S.S.D.	Methane Ni-based Catalyst	Catalysis	-		2024
03	Manikanta, S Sengupta.	Development for the Catalytic Conversion of CO ₂ to Substitute Natural Gas—Effect of Preparation Method	Letters			2024
04	Pavan K. Gupta,	Comparative Studies of	•	8	e2022	2023
	Vineet Kumar, Sudip	Co/SBA-15 Catalysts	Select	(11)	04962	

12. A) Publications (List of Selected Papers Published in SCI Journals)

05	Maity,GoutamKishoreGupta,SudiptaDatta,ArvindSingh,SiddharthaSengupta	Synthesized with Different Silica Sources Including Coal Fly Ash for Fischer- Tropsch Synthesis	Indian	65(6)	574-	2023
03	R Kumari, S Sengupta	MgAl ₂ O ₄ with CaO in supported Ni and Ni-Co catalysts - impact on CO ₂ reforming of CH ₄	Inaian Chemical Engineer	03(0)	574- 586	2023
06	M D Shakir, M Prasad K Ray, S Sengupta, A Sinhamahapatra, S Liu, H Vuthaluru,	NaBH ₄ -Assisted Synthesis of B-(Ni-Co)/MgAl ₂ O ₄ Nanostructures for the Catalytic Dry Reforming of Methane	ACS Applied Nano Materials	5	10951 -1096 1	2022
07	M D Shakir, M Prasad K Ray, S Sengupta , A Sinhamahapatra, S Liu, H Vuthaluru,	<i>B-Ni/MgAl</i> ₂ O ₄ catalyzed dry reforming of methane: The role of boron to resist the formation of graphitic carbon	Fuel	320	12395 0	2022
08	M Prasad, K Ray, A Sinhamahapatra, S Sengupta; 57 (2022)	Ni/Ce _x Zr _{1-x} O ₂ catalyst prepared via one-step co- precipitation for CO ₂ reforming of CH ₄ to produce syngas: Role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)	Journal of Materials Science	57	2839– 2856	2022
09	S Biswas, H-Y Lee, M Prasad, A Sharma, J-S Yu, S Sengupta, D D Pathak, and A Sinhamahapatra	Black TiO _{2- x} Nanoparticles Decorated with Ni Nanoparticles and Trace Amounts of Pt Nanoparticles for Photocatalytic Hydrogen Generation,	ACS Applied Nano Materials	4	4441- 4451	2021
10	R Kumari, S Sengupta	Catalytic CO ₂ reforming of CH ₄ over MgAl ₂ O ₄ supported Ni- Co catalysts for the syngas production,		45	22775 - 22787	2020
11	K Ray, S Sengupta , G Deo	Reforming and cracking of CH ₄ over Al ₂ O ₃	Fuel Processing Technology	156	195- 203.	2017

	supported Ni, Ni-Fe and				
	Ni-Co catalysts;				
12 S Sengupta and G	Modifying alumina with	Journal of	10	67-77.	2015
Deo	CaO or MgO in	CO_2			
	supported Ni and Ni-Co	Utilization			
	catalysts and its effect on				
	dry reforming of CH4				
13 G P Singh, A P	Corrosion Behavior of IF	Journal of	24	1961-	2015
Moon, S Sengupta,	Steel in Various Media	Materials		1974.	
G Deo, S Sangal and	and Its Comparison with	Engineerin			
K Mondal	Mild Steel;	g and			
		Performan			
		се			
14 S Sengupta, K Ray	The effects of modifying	Internation	39	11462	2014
and G Deo	the Ni/Al ₂ O ₃ catalyst with	al Journal		-	
	cobalt on the catalytic	of		11472	
	reforming of CH ₄ with	Hydrogen			
	<i>CO</i> ² and cracking of CH ₄	Energy			
	reactions;	07			
15 Taraknath Das, S	Effect of calcination	Reaction	110	147-	2013
Sengupta and G Deo	temperature during the	Kinetics,		162.	
	synthesis of Co/Al ₂ O ₃	Mechanism			
	catalyst used for the	s and			
	hydrogenation of CO_2	Catalysis			
16 A Choudhary, S	Effects of co-solutes on	Desalinatio	44	67-74.	2012
Sengupta, C	Cr (VI) removal by	n and			
Bhattacharjee and S	micellar enhanced				
Datta	ultrafiltration (MEUF)	Treatment			
	process;	1.0000000			
17 S Mondai,, S	A study based on the	Indian	30(1)	40-45	2010
Dasgupta., S	different dozing levels pf	Journal of			
Sengupta,	primary tanery wastewater	Environme			
C Bhattacharjee, S	treatement	ntal			
Mondai,		Protection			
			15	170	2010
18 A Choudhary, S	Extraction of Hexavalent	Separation	45	178-	2010
Sengupta, C	Chromium from Aqueous	Science		185.	
Bhattacharjee and S	Stream by Emulsion	and To be t			
Datta,	Liquid Membrane (ELM);	Technology			

B) Selected Recent Conference Publications:

S Kamaliney, S Sengupta, Development of carbon resistant catalyst by exploiting the role of B and OSC for DRM, 18 th International Congress on Catalysis, Lyon, France, 2024

- P Singh, S Sengupta, Pd Promoted Mixed Metal Oxide Supported Catalyst for CO₂ Hydrogenation to Methanol, 18 th International Congress on Catalysis, Lyon, France, 2024
- V.V.S.S.D. Manikanta, S, CO₂ to Substitute Natural Gas by Pulse Reaction Effect of Catalyst Preparation, 18th International Congress on Catalysis, Lyon, France, 2024
- P Singh, S Sengupta, Ceria Zirconia based Mixed Metal Oxide Catalyst Development for methanol production by CO₂ Hydrogenation, International Conference on Net-Zero Emission Technology for sustainable Development: Challenges and Opportunities (N0ET-2022), IIT(ISM) Dhnabad
- P Singh, S Sengupta, Screening of reducible oxide support for CO₂ Activation to methanol, International Conference on Chemical Engineering: Enabling Transition towards sustainable future-2022
- P Singh, S Sengupta, Catalyst Development for methanol production by CO2 Hydrogenation, Chemcon-2019
- M Prasad, S Sengupta, Dry Reforming of Methane for the Production of Syngas over Ceria-Zirconia Supported Nickel-based Catalysts, ACES-2020 IISER Bhopal
- M Prasad, S Sengupta, Thermodynamic Analysis of Dry Reforming of Methane for the Production of Syngas using Aspen Plus at Equilibrium Conditions, CHEMCON-2020
- Goutam Deo, Koustuv Ray, Aditya S. Sandupatla, S Sengupta, Sudhir C. Nayak, Puneet K. Chaudhary and Neeraj Koshta; Good Catalyst Better Catalyst for the CO₂ Reforming of CH₄: A Bit of Science and Engineering for this Catalytic Reaction, 26th meeting of the North American Catalysis Society (NAM26) 2019, Chicago, USA.
- R Kumari and S Sengupta, Dry Reforming of Methane over Ni-based Catalysts, Conference on Advances in Catalysis for Energy and Environment (CACEE-2018), organized by TIFR, Mumbai, 2018.
- G Saha and S Sengupta, Catalytic CO₂ Hydrogenation to Methanol Production, Conference on Advances in Catalysis for Energy and Environment (CACEE-2018), organized by TIFR, Mumbai, 2018.
- S Sengupta and G Deo, CO₂ reforming of CH₄ over modified Ni/Al₂O₃ catalysts, 12th International Conference on Carbon Dioxide Utilization (ICCDU XII), 2013 Alexandria, Virginia, United States.
- K Ray, S Sengupta and G Deo, Catalytic activity of alumina supported Ni-based bimetallic catalysts, 2nd International Conference on Materials for Energy ENMAT II, 2013, Karlsruhe, Germany.

- S Sengupta and G Deo, CO₂ Reforming of CH₄ to Produce Syngas over Metal-Supported Catalysts.15th International Congress on Catalysis 2012, 2012, Munich, Germany.
- S Sengupta and G Deo, CO₂ Reforming of CH₄ to Produce Syngas over Metal-Supported Catalysts. 2nd Indo-German Workshop on "Advances in Reaction and Separation Processes, 2012, Bad Herrenalb, Germany.
- S Sengupta and G Deo, CO₂ reforming of CH₄ to produce synthesis gas over modified and un-modified Ni/Al₂O₃ catalysts. ChEmference 2011, Chemical Engineering Department, IISc Bangalore, 2011, India.
- S Sengupta and G Deo, CO₂ reforming of CH₄ to produce synthesis gas over modified and un-modified Ni/Al₂O₃ catalysts. 11th International Conference on Carbondioxide Utilization (ICCDU XI), 2011, Dijon, France.

13. Any other relevant information: A) Sponsored R&D projects completed/handled:

Sl. No.	PI/Co- PI/Mem ber	Sponsoring Authority	Topic/ Field	Sanctione d Amount (Lakhs)	Status
1	Member	Shri Naresh Vashisht (Alumni)	Centre for Hydrogen and CCUS Technologies	1000	Ongoing (from 30 September 2024)
2	Co-PI	Ministry of Chemicals and Fertilizers, Department of Chemicals and Petrochemicals	Coal to Acetylene and Fine Chemicals	561	Sanctioned (23 September 2024)
3	Co-PI	DST (SERB)- FIST	To strengthen the research facilities in the Department of Chemical Engineering	156	Ongoing
4	Co-PI	DST (SERB)- SUPRA	Investigating Uncharted 2D Catalytic Materials for Lignocellulosic Biomass Transformation into High- Value Platform Chemicals and Fuel	30.25	Completed

5	PI	DST (SERB)	Development of an efficient Pd-Cu bimetallic catalyst for the catalytic CO ₂ hydrogenation for Methanol production	22.15	Completed
6	PI	TEQIP-II	TEQIP-II under Minor Research Project Scheme, ISM Dhanbad	1.5	Completed
7	PI	Faculty Research Scheme (FRS), ISM Dhanbad	CO ₂ reforming of CH ₄ over modified Ni based catalysts for synthesis gas production	11.15	Completed

14. Experience

Details of expertise available and work done in the proposed field by the institution/ agency(s) concerned

Currently working as an Associate Professor in the Department of Chemical Engineering at the Indian Institute of Technology (Indian School of Mines) Dhanbad. Research in our group is resting on understanding the catalytic activity and selectivity issues for supported metal and metal oxide and related heterogeneous catalysed systems. The current research interest is in the broad area of heterogeneously catalysed reactions involving hydrocarbons for which the effects of various catalyst parameters are studied. A judicious choice of characterization techniques complemented with reactivity data assists in understanding why some of the parameters do or do not have an effect on the catalytic activity and selectivity. Designing a catalyst using modifiers has also been undertaken and from the structure-reactivity relationships and statistical methodologies, an optimum catalytic composition is determined. Specifically, the reactions that are under consideration: are (i) Dry Reforming of Methane (DRM) to produce syngas and (ii) CO₂ hydrogenation for the production of Methanol and Methane. Future studies will involve other hydrocarbon-based reactions and the utilization of simultaneous *in-situ* characterization and reaction techniques, coined as *Operando* spectroscopy, for the understanding of some heterogeneously catalysed reactions. I have completed a project under the Young Scientist Scheme (YSS) of SERB on the topic of CO₂ conversion to Methanol [File No: YSS/2015/001040]. I have worked on the topic of catalytic CO₂ conversion for more than 15 years and have considerable publications in reputed journals (list of publications is provided in bio data).