CURRICULUM - VITAE

Dr. ABHISHEK KUMAR SINGH

Associate Professor Department of Mathematics and Computing Indian Institute of Technology (ISM) Dhanbad, India

PERSONAL INFORMATION :

Date of Birth: Nationality:	05-Sep-1981 INDIAN
Email:	abhishek@iitism.ac.in, abhi.5700@gmail.com
Ph. No.	+91-9572159264
Address:	Department of Mathematics and Computing, Science Block-307,
	Indian Institute of Technology (ISM) Dhanbad-826004, Jharkhand, India

ACADEMIC QUALIFICATION :

B. Sc. (Maths, Physics, Chemistry)	2005	University of Allahabad, Allahabad,
		India
M. Sc. (Mathematics and Computing)	2007	Indian School of Mines, Dhanbad,
		India
M. Phil. (Applied Mathematics)	2008	Indian School of Mines, Dhanbad,
		India
Ph.D. (Elastodynamics)	2011	Indian School of Mines, Dhanbad,
		India

ACADEMIC EXPERIENCE

S.No.	Positions held	Name of the Institute	From	То	Pay Scale
1	Lecturer	Thapar University, Patiala	17/01/2011	21/04/2011	PB-3 (15,600-39,100) AGP-3000
2	Lecturer	Thapar University, Patiala	22/04/2011	16/04/2012	PB-3 (15,600-39,100) AGP-6000
3	Assistant Professor	Thapar University, Patiala	17/04/2012	30/06/2013	PB-3 (15,600-39,100) AGP-7000
4	Assistant Professor	Indian School of Mines, Dhanbad	01/07/2013	05/09/2013	PB-3 (15,600-39,100) AGP-6000
5	Assistant Professor	Indian School of Mines, Dhanbad	06/09/2013	16/08/2014	PB-3 (15,600-39,100) AGP-7000
6	Assistant Professor	IIT (ISM), Dhanbad	17/08/2014	16/08/2017	PB-3 (15,600-39,100) AGP-8000

7	Assistant Professor	IIT (ISM), Dhanbad	17/08/2017	05/06/2019	Pay Level 13A1
8	Associate Professor	IIT (ISM), Dhanbad	06/06/2019	Till date	Pay Level 13A2

HONORS/ AWARDS/:

S.No.	Name of Award	Awarding Agency	Year
1	Canara Bank Research Publication	IIT (ISM), Dhanbad	2018
	Award		
2	Canara Bank Research Publication	IIT (ISM), Dhanbad	2017
	Award		
3	Performance Incentive Scheme	Thapar University, Patiala	2011-2012
4	Best Poster Presentation Award for	97th INDIAN SCIENCE CONGRESS held in	2010
	Mathematical Science	Kerala University, Thiruvananthapuram, Kerala,	
		India during 3-7 Jan 2010.	

MEMBERSHIP IN SCIENTIFIC ORGANIZATIONS:

- 1. Presently Life member (Membership No. L15019) of "*THE INDIAN SCIENCE CONGRESS ASSOCIATION*", Kolkata, India.
- 2. Presently Life member of "VON KARMAN SOCIETY FOR ADVANCED STUDY AND RESEARCH IN MATHEMATICAL AND SOCIAL SCIENCES", Jalpaiguri, West Bengal.
- 3. Presently Life member of "THE INDIAN MATHEMATICAL SOCIETY", Pune, India.
- 4. Outreach Member of "Society for Industrial and Applied Mathematics" with reference number as 7242156042.

REVIEWER:

Serving as reviewer to some SCI journals of American Society of Civil Engineers (ASCE), SAGE, Springer, Elsevier, World Scientific, Taylor & Francis etc.

DETAILS OF PHD SUPERVISION:

Details	As a Sole Guide	As a Principal Guide (with a Co-guide)	As a Co-guide	Total
No. of PhD supervised	15	07	01	23
No. of PhD under Supervision	08	01	00	09

DETAILS of M.Phil. PROJECT SUPERVISION:

No. of M.Phil. Supervised/Awarded as: 02

DETAILS OF EXTERNALLY FUNDED SPONSORED RESEARCH PROJECTS:

S N	Project Title	Project No. of Funding Agency Dhanbad	Project No. of IIT(ISM) Dhanbad	Sanctioned Amount in INR	Received Amount in INR	Role (PI/ CO- PI)	No. of CO	Funding Agency	Duration/ Status
						/	PIs		
1	MATHEMATICALSTUDYONWAVE PROPAGATIONASPECTS INPIEZOELECTRICCOMPOSITESTRUCTURESWITHCOMPLEXITIES	EMR/2016/0 03985, Dated March 15, 2017	DST(SERB)/ (167)/2016- 2017/510/A M	14,69,000	13,72,666	PI	0	DST SERB	3 Yrs/ Completed
2	STUDY OF WAVE PROPAGATION ASPECTS IN PIEZOELECTRIC, PIEZOMAGNETIC AND FUNCTIONALLY GRADED PIEZOELECTRIC COMPOSITE STRUCTURES	25(0265)/17/ EMR-II, Dated April 27, 2017	CSIR(25)/20 17- 2018/522/A M	16,33,002	16,33,002	PI	0	CSIR	3 Yrs/ Completed
3	MATHEMATICAL MODELLING OF ELASTIC WAVE PROPAGATION IN HIGHLY ANISOTROPIC AND HETEROGENEOUS MEDIA	2/48(3)/2016 /NBHM(R.P.)/R&D II/4528, Dated March 31, 2017	NBHM/2017 - 2018/528/A M	14,38,000	13,36,442	PI	1	NBHM	3 Yrs/ Completed
4	MATHEMATICAL STUDY ON THE ANALYSIS OF THERMOELASTIC DAMPING AND FREQUENCY SHIFT IN THERMOELASTIC MICRO/NANO-SCALE BEAMS WITH COMPLEXITIES	MTR/2021/0 00525, Dated Feb 14, 2022	DST(SERB)/ (321)/2021- 2022/873/M nC	6,60,000	4,40,000	PI	0	DST SERB	3 Yrs/Ongoi ng
5	MATHEMATICAL MODELLING OF SEISMIC WAVE PROPAGATION IN COMPOSITE LAYERED STRUCTURES	EMR/2017/0 00263, Dated August 08, 2017	DST(SERB)/ (177)/2017- 2018/532/A M	15,19,000	13,73,030	CO-PI	1	DST SERB	3 years/ Completed

DETAILS OF OUTREACH PROGRAMMES (EDPS/PDPS/MDPS/CONFERENCES/SEMINARS ORGANISED):

Sl no.	Title	Number Assigned to the Course	External Funding in INR	Funding Agency	Role (CI/Co-CI)	Duration	Status
1	MATHEMATICAL MODELLING OF ELASTODYNAMIC PROBLEMS	CONS/3594/2017- 2018	1,88,884	Various Organization (Externally Funded)	CI- Myself	5 days (August 3-7, 2017)	Completed
2	RELIABILITY AND SAFETY ANALYSIS	CONS/3230/2016-17	2,06,421	Various Organization (Externally Funded)	Co-CI- Myself CI-Prof. Subhashis Chatterjee	5 days (June 20- 24, 2016)	Completed
3	NATIONAL CONFERENCE ON WAVE MECHANICS AND VIBRATIONS		3,85,000	DST NEW DELHI and JHARKHAND DST	Organizing Secretary/ Co-CI- Myself Convener-Prof. Sanjeev Anand Sahu	3 days (December 21- 23, 2015)	Completed
4	SEVEN DAYS ONLINE WORKSHOP ON "BUILDING INTERNET SCALE APPLICATIONS"	EDP/7163/2023-24	70,800	Various Organization (Externally Funded)	CI- Myself Co-CI- Prof. Subhashis Chatterjee Co-CI- Prof. Saurabh Srivastava	7 days (16-22 December, 2023)	Completed

BOOK CHAPTERS:

S.No.	Title	Authors	Publisher	Year of Publication
1	APPLICATION OF POLYNOMIAL FUNCTIONS IN	A. K. Singh &	IOP	2022
	ANALYZING ANTI-PLANE WAVE PROFILES IN	S. Singh	Publishing	
	A FUNCTIONALLY GRADED PIEZOELECTRIC-	U	Ltd	
	VISCOELASTIC-POROELASTIC STRUCTURE			
	WITH BUFFER LAYER			
2	MATHEMATICAL STUDY OF REFLECTION AND	A. K.Singh &	World	2022
	TRANSMISSION PHENOMENON OF PLANE	S. Guha	Scientific	
	WAVES AT THE INTERFACE OF TWO			
	DISSIMILAR INITIALLY STRESSED ROTATING			
	MICRO-MECHANICALLY MODELED			
	PIEZOELECTRIC FIBER-REINFORCED			
	COMPOSITE HALF-SPACES.			
3	PROPAGATION OF EDGE WAVE IN	P. Kumar,	Springer	2020
	HOMOGENEOUS VISCOELASTIC SANDY MEDIA	A. Chattopadhy	Link	
		ay, A. K. Singh		
4	ANTI-PLANE SHEAR WAVE IN	M. S. Chaki &,	IGI Global	2019
	MICROSTRUCTURAL MEDIA: A CASE WISE	A. K. Singh		
	STUDY OF MICROPOLARITY, IRREGULAR, AND			
	NON-PERFECT INTERFACE			
5	IMPACT OF RECTANGULAR/PARABOLIC	MS Chaki, S	Springer	2018
	SHAPED IRREGULARITY ON THE	Guha, & AK	Link	
	PROPAGATION OF SHEAR HORIZONTAL WAVE	Singh		
	IN A SLIGHTLY COMPRESSIBLE LAYERED			
	STRUCTURE			

ADMINISTRATIVE TASKS:

- 1. Served as ACTING DEAN (INFORMATION SYSTEMS) for the duration May 27, 2021 to October 20, 2023.
- 2. Served as **HEAD AUTOMATION CENTRE** for the duration May 27, 2021 to October 20, 2023.
- 3. Served as HEAD COMPUTER CENTRE for the duration May 27, 2021 to October 20, 2023.
- 4. Served as ASSOCIATE DEAN (AUTOMATION) for the duration September 30, 2019 to June 21, 2021.
- 5. Served as **CHAIRMAN, DOCUMENTATION CELL**, IIT(ISM), Dhanbad for the duration December 10, 2018 to June 26, 2020.
- 6. Served as a **NODAL OFFICER, DOCUMENTATION CELL**, IIT(ISM) Dhanbad for the duration April 23, 2018 to December 09, 2018.
- 7. Served as WARDEN, JASPER HOSTEL (D- BLOCK) for 04 years (from 1st June 2014 to 31st May 2018).
- 8. Served as JOINT SECRETARY ISMAA (INDIAN SCHOOL OF MINES ALUMNI ASSOCIATION).
- 9. Served as a **MEMBER, MONITORING AND REVIEW CELL** in IIT(ISM), Dhanbad from August 24, 2018 to September 29, 2019.
- 10. Served as **DFSC** (**DEPARTMENT FACULTY SCRUTINY COMMITTEE**) from July 26, 2019 to Nov 30, 2020.
- 11. Served as NODAL OFFICER from IIT(ISM) Dhanbad for NIRF-2019, NIRF-2020 and NIRF-2021.
- 12. Served as a CONVENER SRIJAN-2019, the Socio-Cultural Festival of IIT(ISM) Dhanbad.
- 13. Served as a **CO-CONVENER BASANT-2019**, the Alumni Reunion of IIT (ISM) Dhanbad.
- 14. Served as a CO-CONVENER SRIJAN-2018, the Socio-Cultural Festival of IIT (ISM) Dhanbad.
- 15. Served as a FACULTY-IN-CHARGE ATHLETICS, Sports and Physical Education Centre, IIT(ISM), Dhanbad.
- 16. Presently serving as DFSC (Department Faculty Scrutiny Committee) from Jan 24, 2024 to till date.
- 17. Presently serving as a member of DGRC (Departmental Grievance Redressal Committee) from Feb 28, 2024 to till date.

18. Presently serving as a Vice-Chairperson (PG/PhD) CDC from July 01, 2024 to till date.

EXTRA CURRICULAR ACTIVITIES:

- 1. **BEST ATHLETE STAFF (MEN) AWARD** of IIT(ISM) Dhanbad in **three consecutive years** 2017-18, 2018-19 & 2019-20.
- 2. **FIRST POSITION holder in Hindi Essay Writing Competition** in Teachers and Officers category for two consecutive years organized during Hindi Pakhwada-2015 and Hindi Pakhwada-2016 at IIT(ISM) Dhanbad.
- 3. **SECOND POSITION holder in Hindi Essay Writing Competition** in Teachers and Officers category organized during Hindi Pakhwada 2017 at IIT(ISM) Dhanbad.

PUBLICATIONS:

International Journal

- Kumari, R., Singh, K. A., Kumar, S., & Guha, S. (2024). Transmission of Lamb wave in a micro-mechanically piezoelectric fiber-reinforced composite plate. *Wave Motion*, 103307. https://doi.org/10.1016/j.wavemoti.2024.103307
- 2. Singh, S. and Singh, A.K., (2024). BG waves in a piezo-flexo-magnetic layered model with impedance boundary and imperfect interface. *Acta Mechanica*, pp.1-17.
- 3. Koley, S., **Singh, A.K.** and Negi, A., (2024). Scattering and reflection phenomena of SH-waves propagation through the surface irregularity in an orthotropic viscoelastic structure. *Acta Mechanica*, pp.1-16.
- 4. Mahanty, M., Kumar, P., **Singh, A.K.** and Chattopadhyay, A., (2024). Analytical study on transverse behaviour of Love-type waves in a corrugated cylindrical composite structure: A perturbation theory. *International Journal of Non-Linear Mechanics*, 160, p.104660.
- 5. Singh, S. and Singh, A.K., (2024). Anti-plane waves in a liquid-loaded piezo-flexo-electric layered model with interface energy. *Mathematics and Mechanics of Solids*, p.10812865241239600.
- Singh, A.K., Singh, S. & Koley, S. (2023). Reflection of plane wave at an initially stressed rotating piezo-electromagnetic-fiber-reinforced Composite half-space. *The European Physical Journal Plus* 138, 296. https://doi.org/10.1140/epjp/s13360-023-03907-4
- Negi A., Singh A. K. & Koley S. (2023). On the Scattering of Love Waves in a Layered Transversely Isotropic Irregular Poro-viscoelastic Composite Rock Structure, *Journal of Earthquake Engineering*, 27:7, 1900-1919, DOI: 10.1080/13632469.2022.2089406
- 8. A. Srivastava, **Singh A. K.** & Chattopadhyay A. (2023). Reflection and transmission of three-dimensional plane wave at an imperfectly bonded interface between two distinct rotating functionally graded triclinic media, *Waves in Random and Complex Media*. DOI: 10.1080/17455030.2023.2203271.
- 9. Singh A. K., Singh A. K., Guha S. & Kumar D. (2023). Mathematical analysis on the propagation of Griffith crack in an initially stressed strip subjected to punch pressure, *Mechanics Based Design of Structures and Machines*, DOI:10.1080/15397734.2023.2223614
- 10. Guha S. & Singh A. K. (2022). Frequency shifts and thermoelastic damping in distinct Micro-/Nano-scale piezothermoelastic fiber-reinforced composite beams under three heat conduction models, *Journal of Ocean Engineering and Science*, ISSN 2468-0133, DOI: https://doi.org/10.1016/j.joes.2022.06.015
- 11. Singh, A. K., Kumari, R., & Dharmender. (2022). Green's function analysis of mass loading sensitivity on the shear wave propagation induced by a point source in piezo-electro-magnetic structure. *Mechanics Based Design of Structures and Machines*, 50(10), 3511-3532
- 12. Kumari, R., & Singh, A. K. (2022). Dispersion and attenuation of shear wave in couple stress stratum due to point source. *Journal of Vibration and Control*, 28(13-14), 1754-1768.
- 13. Singh, S., Singh, A. K., & Guha, S. (2022). Reflection of plane waves at the stress-free/rigid surface of a micromechanically modelled Piezo-Electro-Magnetic Fiber-Reinforced half-space. *Waves in Random and Complex Media*, 1-30.
- 14. Singh, A. K., & Singh, A. K. (2022). Dynamic stress concentration of a smooth moving punch influenced by a shear wave in an initially stressed dry sandy layer. *Acta Mechanica*, 1-12.
- 15. Singh, A. K., & Singh, A. K. (2022). Analysis on the propagation of crack in a functionally graded orthotropic strip under pre-stress. *Waves in Random and Complex Media*, 1-19.

- Singh, A. K., Rajput, P., Guha, S., & Singh, S. (2022). Propagation characteristics of love-type wave at the electromechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric halfspace. *European Journal of Mechanics-A/Solids*, 104527.
- 17. Guha, S. & Singh, A. K. (2022). Influence of varying fiber volume fractions on plane waves reflecting from the stress-free/rigid surface of a piezoelectric fiber-reinforced composite half-space. *Mechanics of Advanced Materials and Structures*, 29(27), 5758–5772.
- Pal, M. K., Singh, A. K., & Kumari, R. (2022). Reflection of plane waves on the stress-free and rigid boundary surfaces of pre-stressed piezoelectric-orthotropic substrate: A comparative approach. *Mechanics of Advanced Materials and Structures*, 29(6), 816–827.
- 19. Singh, A. K., Rajput, P., & Chaki, M. S. (2022). Analytical study of Love wave propagation in functionally graded piezo-poroelastic media with electroded boundary and abruptly thickened imperfect interface. *Waves in Random and Complex Media*, 32(1), 463–487.
- Srivastava, A., Chattopadhyay, A., & Singh, A. K. (2022). Influence of doubly loaded elastic void pores and distinct inhomogeneity in the sandwiched layered composite structure. *Waves in Random and Complex Media*, 32(1), 233– 250.
- 21. Guha, S., Singh, A. K. & Das, A. (2021). Analysis on different types of imperfect interfaces between two dissimilar piezothermoelastic half-spaces on reflection and refraction phenomenon of plane waves, *Waves in Random and Complex Media*, 31(4), 660-689.
- 22. Saha, S., Singh, A. K., & Chaki, M. S. (2021). Analysis of generated shear wave due to stress discontinuity in a monoclinic layered structure. *Waves in Random and Complex Media*, 1-29.
- Singh, A. K., Mahto, S., & Guha, S. (2021). Analysis of plane wave reflection and transmission phenomenon at the interface of two distinct micro-mechanically modeled rotating initially stressed piezomagnetic fiber-reinforced halfspaces, *Mechanics of Advanced Materials and Structures* 29(28), 7623–7639.
- Singh, S., Singh, A. K., & Guha, S. (2021). Shear waves in a Piezo-Fiber-Reinforced-Poroelastic composite structure with sandwiched Functionally Graded Buffer Layer: Power Series approach. *European Journal of Mechanics-A/Solids*, 104470.
- 25. Singh, A. K., Mahto, S., & Guha, S. (2021). Analysis of plane wave reflection phenomenon from the surface of a micro-mechanically modeled piezomagnetic fiber-reinforced composite half-space. *Waves in Random and Complex Media*, 1-22.
- 26. Singh, A. K., Koley, S., & Chaki, M. S. (2021). Generation and Propagation of SH Waves Due to Shearing Stress Discontinuity in Linear Orthotropic Viscoelastic Layered Structure. *International Journal of Applied and Computational Mathematics*, 7(6), 1-23.
- 27. Singh, A. K., Ray, A., & Kumari, R. (2021). A new dispersive wave with Love-type waves in a microstructure due to an impulsive point source. *Waves in Random and Complex Media*, 1-23.
- 28. Chaki, M. S., & Singh, A. K. (2021). Scattering and propagation characteristics of SH wave in reduced Cosserat isotropic layered structure at irregular boundaries. *Mathematical Methods in the Applied Sciences*, 44(7), 6143-6163.
- 29. Singh, A. K., Kaur, T., Saha, S., Kumar, S., & Chattopadhyay, A. (2021). Study on propagation characteristics of SH-wave in an imperfectly bonded functionally graded structure with viscoelastic stratum and fibre-reinforced substrate. *Arabian Journal of Geosciences*, 14(14), 1-15.
- 30. Ray, A., & Singh, A. K. (2021). Impact of imperfect corrugated interface in piezoelectric-piezomagnetic composites on reflection and refraction of plane waves. *The Journal of the Acoustical Society of America*, 150(1), 573-591.
- Singh, P., Singh, A. K., & Chattopadhyay, A. (2021). Reflection of three-dimensional plane waves at the free surface of a rotating triclinic half-space under the context of generalized thermoelasticity. *Applied Mathematics and Mechanics*, 42(9), 1363-1378.
- 32. Singh, P., Chattopadhyay, A., & Singh, A. K. (2021). Propagation of Love-type wave in functionally graded prestressed magneto-visco-elastic fiber-reinforced composite structure. *Waves in Random and Complex Media*, 31(5), 942-971.
- 33. Kumar, P., Mahanty, M., Singh, A. K., & Chattopadhyay, A. (2021). Analytical study on shear wave propagation in anisotropic dry sandy spherical layered structure. *Applied Mathematical Modelling*.
- Pal, M. K., & Singh, A. K. (2021). Analysis of reflection and transmission phenomenon at distinct bonding interfaces in a rotating pre-stressed functionally graded piezoelectric-orthotropic structure. *Applied Mathematics and Computation*, 409, 126398.
- 35. Mahanty, M., Kumar, P., **Singh, A. K.**, & Chattopadhyay, A. (2021). Green's function analysis of shear wave propagation in heterogeneous poroelastic sandwiched layer influenced by an impulsive source. *Wave Motion*, 107, 102821
- 36. Singh, P., **Singh, A. K.**, & Chattopadhyay, A. (2021). Influence of distinct type of imperfect interfaces on reflection and transmission phenomena of triclinic thermoelastic structure. *Journal of Thermal Stresses*, 44(9), 1096-1120.

- 37. Singh, A. K., & Kumari, R. (2021). Scattering of plane SH waves on an irregular piezomagnetic stratum-substrate structure. *Applied Mathematical Modelling*, 100, 240-262.
- 38. Singh, S., Singh, A. K., & Guha, S. (2021). Impact of interfacial imperfections on the reflection and transmission phenomenon of plane waves in a Porous-Piezoelectric model. *Applied Mathematical Modelling*, 100, 656-675.
- Guha, S., & Singh, A. K. (2021). Frequency shifts and thermoelastic damping in different types of Nano-/Microscale beams with sandiness and voids under three thermoelasticity theories. *Journal of Sound and Vibration*, 116301.
- 40. Guha, S., & Singh, A. K. (2021). Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces. *European Journal of Mechanics-A/Solids*, 104242.
- 41. Pal, M. K., & Singh, A. K. (2021). On the characteristics of reflected waves in Rotating Functionally graded initially stressed piezoelectric-orthotropic half-space. *Waves in Random and Complex Media*, 33(4), 899–913.
- 42. Singh, S., Singh, A.K. (2021) Anti-plane surface and interfacial waves influenced by layer reinforcement in Piezo-Electro-Magnetic structures with surface energy. *The European Physical Journal Plus*, 136(3), 1-20.
- 43. Kumari, R., Singh, A. K., & Ray, A. (2021). Love-type wave in low-velocity piezoelectric-viscoelastic stratum with mass loading. *Acta Mechanica*, 232(4), 1253-1271.
- 44. Mahanty, M., Kumar, P., **Singh, A. K**., & Chattopadhyay, A. (2021). Analysis on the propagation of Griffith crack in a magnetoelastic self-reinforced strip subjected to moving punch of constant load. *Archive of Applied Mechanics*, 91, 791–808.
- 45. Kumar, P., Singh, A. K., & Chattopadhyay, A. (2021). Influence of an impulsive source on shear wave propagation in a mounted porous layer over a foundation with dry sandy elastic stratum and functionally graded substrate under initial stress. *Soil Dynamics and Earthquake Engineering*, 142, 106536.
- 46. Kumar, P., Mahanty, M., Singh, A. K., & Chattopadhyay, A. (2021). Analytical study on stress intensity factor due to the propagation of Griffith crack in a crystalline monoclinic layer subjected to punch pressure. *Fatigue & Fracture of Engineering Materials & Structures*, 44(2), 475-487.
- 47. Ray, A., & Singh, A. K. (2021). Electromechanical coupling and mass loading sensitivity of SH waves in a dielectrically imperfect piezoelectric structure. *International Journal of Solids and Structures*, 210, 49-65.
- 48. Singh, P., Singh, A. K., & Chattopadhyay, A. (2021). Reflection and transmission of thermoelastic waves at the corrugated interface of crystalline structure. *Journal of Thermal Stresses*, 44(4), 469–512.
- 49. Saha, S., Singh, A. K., & Chattopadhyay, A. (2021). Impact of curved boundary on the propagation characteristics of Rayleigh-type wave and SH-wave in a prestressed monoclinic media. *Mechanics of Advanced Materials and Structures*, 28(12), 1274–1287.
- 50. Singh, A. K., Agarwalla, S., Chaki, M. S., & Chattopadhyay, A. (2021). Shear wave propagation in a slightly compressible finitely deformed layer over a foundation with pre-stressed fibre-reinforced stratum and dry sandy viscoelastic substrate. *Waves in Random and Complex Media*, 31(5), 847–866.
- 51. Singh, A. K., Singh, A. K., & Yadav, R. P. (2020). Stress Intensity Factor of Dynamic Crack in Double-Layered Dry Sandy Elastic Medium due to Shear Wave under Different Loading Conditions. *International Journal of Geomechanics*, 20(11), 04020215.
- 52. Singh, P., Singh, A. K., Chattopadhyay, A., & Guha, S. (2020). Mathematical study on the reflection and refraction phenomena of three-dimensional plane waves in a structure with floating frozen layer. *Applied Mathematics and Computation*, 386, 125488.
- 53. Guha, S., & Singh, A. K. (2020). Effects of Initial Stresses on reflection phenomenon of plane waves at the free surface of a Rotating Piezothermoelastic Fiber-Reinforced Composite half-space. *International Journal of Mechanical Sciences*, 105766.
- 54. Singh, A.K., Singh, S., Kumari, R. Ray, A. (2020). Impact of point source and mass loading sensitivity on the propagation of an SH wave in an imperfectly bonded FGPPM layered structure. *Acta Mechanica* 231, 2603–2627.
- Chaki, M. S., & Singh, A. K. (2020). The impact of reinforcement and piezoelectricity on SH wave propagation in irregular imperfectly-bonded layered FGPM structures: An analytical approach. *European Journal of Mechanics-A/Solids*, 80, 103872.
- 56. Ray, A., & Singh, A. K. (2020). Love-type waves in couple-stress stratum imperfectly bonded to an irregular viscous substrate. *Acta Mechanica*, 231(1), 101-123.
- 57. Negi, A., Singh, A. K., & Yadav, R. P. (2020). Analysis on dynamic interfacial crack impacted by SH-wave in bimaterial poroelastic strip. *Composite Structures*, 233, 111639.
- Mahanty, M., Kumar, P., Singh, A. K., & Chattopadhyay, A. (2020). On the characteristics of shear acoustic waves propagating in an imperfectly bonded functionally graded piezoelectric layer over a piezoelectric cylinder. *Journal* of Engineering Mathematics, 120(1), 67-88.

- 59. Mahanty, M., Kumar, P., **Singh, A. K.**, & Chattopadhyay, A. (2020). Dynamic response of an irregular heterogeneous anisotropic poroelastic composite structure due to normal moving load. *Acta Mechanica*, 231, 2303-2321.
- P. Kumar, M. Mahanty, A. Chattopadhyay, A.K. Singh, (2020). Green's function technique to study the influence of heterogeneity on SH-wave propagation due to a line source in composite layered structure, *Journal of Vibration and Control*, 26(9-10), 701-712.
- Srivastava, A., Chattopadhyay, A., & Singh, A. K. (2020). Analysis of reflection and transmission of three dimensional plane wave in an intermediate fluid layer embedded between two viscoelastic anisotropic semi-infinite media. *International Journal of Mechanical Sciences*, 170, 105007.
- 62. Negi, A., & Singh, A. K. (2019). Analysis on scattering characteristics of Love-type wave due to surface irregularity in a piezoelectric structure. *The Journal of the Acoustical Society of America*, 145(6), 3756-3783.
- 63. Singh, A. K., Negi, A., & Koley, S. (2019). Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate. *Smart Structures and Systems*, 23(1), 31-44.
- 64. Saha, S. **Singh, A. K.** & Chattopadhyay, A. (2019). On propagation behavior of SH-wave and Rayleigh-type wave in an initially stressed exponentially graded fiber-reinforced viscoelastic layered structure, *Waves in Random and Complex Media*, 31(3), 486-514.
- 65. Srivastava, A., Chattopadhyay, A. & Singh, A. K. (2019). Impact of inhomogeneous fiber-reinforced layer with frictional interface on Rayleigh-type wave propagation, *Journal of Engineering Mathematics*, 2019, 114, 159–176.
- Ray, A., Singh, A. K., & Kumari, R. (2019). Green's function technique to model Love-type wave propagation due to an impulsive point source in a piezomagnetic layered structure. *Mechanics of Advanced Materials and Structures*, 28(7), 709-720.
- 67. Singh, A. K., Kumari, R. & Ray, A. (2019). Love-type waves in a piezoelectric-viscoelastic bimaterial composite structure due to an impulsive point source, *International Journal of Mechanical Sciences*, 152, 613-629.
- Das, A., Singh, A. K., Patel, P. P., Mistri, K. C., & Chattopadhyay, A. (2019). Reflection and refraction of plane waves at the loosely bonded common interface of piezoelectric fibre-reinforced and fibre-reinforced composite media. *Ultrasonics*, 94, 131–144.
- 69. Kumar, P., Chattopadhyay, A., Mahanty, M., & Singh, A. K. (2019). Analysis on propagation characteristics of the shear wave in a triple layered concentric infinite long cylindrical structure: An analytical approach. *The European Physical Journal Plus*, 134(1).
- Kumar, P., Chattopadhyay, A., Mahanty, M., & Singh, A. K. (2019). Stresses Induced by a Moving Load in a Composite Structure with an Incompressible Poroviscoelastic Layer. *Journal of Engineering Mechanics*, 145(9), 04019062.
- 71. Singh, A. K., Koley, S., Negi, A., & Ray, A. (2019). On the dynamic behavior of a functionally graded viscoelasticpiezoelectric composite substrate subjected to a moving line load. *The European Physical Journal Plus*, 134(3).
- 72. Saha, S., Chattopadhyay, A. & Singh, A. K. (2019). Numerical modelling of SH-wave propagation in initiallystressed multilayered composite structures: A casewise study. *Engineering Computations*, 36(1), 271-306
- 73. Verma, A. K., Chattopadhyay, A., Chaki, M. S., & Singh, A. K. (2019). Dispersion of Rayleigh-Type wave in an exponentially graded incompressible crustal layer resting on yielding foundation. *Journal of Theoretical and Computational Acoustics*, 27(03), 1850038.
- Kumar, P., Mahanty, M., Chattopadhyay, A., & Singh, A. K. (2019). Effect of interfacial imperfection on shear wave propagation in a piezoelectric composite structure: Wentzel–Kramers–Brillouin asymptotic approach. *Journal* of Intelligent Material Systems and Structures, 30(18-19), 2789-2807.
- 75. Singh, A. K., & Guha, S. (2021). Reflection of plane waves from the surface of a piezothermoelastic fiberreinforced composite half-space. *Mechanics of Advanced Materials and Structures*, 28(22), 2370–2382.
- 76. Chattopadhyay, A., Singh, P., & Singh, A. K. (2018). Rayleigh-type wave propagation in incompressible viscoelastic media under initial stress. *Applied Mathematics and Mechanics*, 39(3), 317–334.
- Singh, A. K., Pal, M. K., Negi, A., & Mistri, K. C. (2018). Analytical Study on Dynamic Response Due to a Moving Load on Distinctly Characterized Orthotropic Half-Spaces Under Different Physical Conditions with Comparative Approach. *Arabian Journal for Science and Engineering*, 44(5), 4863–4883.
- 78. Singh, A. K., Mistri, K. C., & Pal, M. K. (2018). Effect of loose bonding and corrugated boundary surface on propagation of Rayleigh-Type wave. *Latin American Journal of Solids and Structures*, 15(1).
- 79. Yadav, R. P., Singh, A. K., & Chattopadhyay, A. (2018). Analytical study on the propagation of rectilinear semiinfinite crack due to Love-type wave propagation in a structure with two dissimilar transversely isotropic layers. *Engineering Fracture Mechanics*, 199, 201–219.
- Singh, A. K., Negi, A., Yadav, R., & Verma, A. K. (2018). Dynamic stress concentration in pre-stressed poroelastic media due to moving punch influenced by shear wave. *Journal of Seismology*, 22(5), 1263–1274.

- 81. Singh, A. K., Parween, Z., Chaki, M. S., & Mahto, S. (2018). Influence of loose bonding, initial stress and reinforcement on Love-type wave propagating in a functionally graded piezoelectric composite structure. *Smart Structures and Systems*, 22(3), 341-358.
- 82. Chattopadhyay, A., Srivastava, A., Kumar, P., & Singh, A. K. (2018). Analysis of propagation characteristics of a shear wave in a frictionally bonded fibre-reinforced stratum. *Acta Mechanica*, 229(10), 4229–4238.
- 83. Srivastava, A., Chattopadhyay, A., Singh, P., & Singh, A. K. (2018). Two-Dimensional Plane Wave Reflection and Transmission in a Layered Highly Anisotropic Media under Initial Stress. *Journal of Earthquake Engineering*, 24(12), 1867–1885.
- 84. Srivastava, A., Chattopadhyay, A., Singh, P., & Singh, A. K. (2018). Wave analysis at frictional interface: A case wise study. *The European Physical Journal Plus*, 133(3), 112.
- Singh, A. K., Das, A., Ray, A., & Chattopadhyay, A. (2018). On point source influencing Love-type wave propagation in a functionally graded piezoelectric composite structure: A Green's function approach. *Journal of Intelligent Material Systems and Structures*, 29(9), 1928–1940.
- 86. Singh, A. K., Chaki, M. S., & Chattopadhyay, A. (2018). Remarks on impact of irregularity on SH-type wave propagation in micropolar elastic composite structure. *International Journal of Mechanical Sciences*, 135, 325–341.
- 87. Singh, A. K., Kumar, S., & Kumari, R. (2018). Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries. *The European Physical Journal Plus*, 133(3), 120.
- Singh, A. K., Lakshman, A., Mistri, K. C., & Pal, M. K. (2018). Torsional surface wave propagation in an imperfectly bonded corrugated initially-stressed poroelastic sandwiched layer. *Journal of Porous Media*, 21(6), 499– 522.
- Singh, A. K., Parween, Z., Kumar, S., & Chattopadhyay, A. (2017). Propagation characteristics of transverse surface wave in a heterogeneous layer cladded with a piezoelectric stratum and an isotropic substrate. *Journal of Intelligent Material Systems and Structures*, 29(4), 636–652.
- 90. Saha, S., Chattopadhyay, A., & Singh, A. K. (2017). Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure. *Acta Geophysica*, 66(1), 1–19.
- 91. Chattopadhyay, A., Singh, P., Kumar, P., & Singh, A. K. (2017). Study of Love-type wave propagation in an isotropic tri layers elastic medium overlying a semi-infinite elastic medium structure. *Waves in Random and Complex Media*, 28(4), 643–669.
- 92. Das, A., Singh, A. K., & Ray, A. (2017). Rayleigh-type wave propagation through liquid layer over corrugated substrate. *Applied Mathematics and Mechanics*, 38(6), 851–866.
- Chattopadhyay, A., Verma, A. K., Chaki, M. S., & Singh, A. K. (2017). Influence of rigid, Stress-Free and yielding base of a composite structure on the propagation of Rayleigh-Type Wave: A Comparative approach. *Journal of Mechanics*, 34(6), 733–748.
- 94. Singh, A. K., Das, A., Chattopadhyay, A., & Dhua, S. (2017). Influence of magnetic effect, anisotropy, irregularity, initial stress and heterogeneity on propagation of SH-wave in an irregular pre-stressed magnetoelastic monoclinic sandwiched layer. *Arabian Journal of Geosciences*, 10(13), 284.
- 95. Singh, A. K., Das, A., Lakshman, A., Negi, A., & Chattopadhyay, A. (2017). Effects of irregularity and initial stresses on the dynamic response of viscoelastic half-space due to a moving load. *Acta Mechanica Solida Sinica*, 30(3), 306–317.
- 96. Singh, A. K., Yadav, R.P., Kumar, S., & Chattopadhyay, A. (2017). Shear wave in a pre-stressed poroelastic medium diffracted by a rigid strip. *Journal of Sound and Vibration*, 407, 16–31.
- Singh, A. K., Negi, A., Verma, A. K., & Kumar, S. (2017). Analysis of Stresses Induced due to a Moving Load on Irregular Initially Stressed Heterogeneous Viscoelastic Rock Medium. *Journal of Engineering Mechanics*, 143(9), 04017096.
- Kaur, T., Sharma, S. K. & Singh, A. K. (2017). Love wave propagation in vertical heterogeneous fibre-reinforced stratum imperfectly bonded to a micropolar elastic substrate, *International Journal of Geomechanics*, 18(2), 04017146.
- 99. Singh, A. K., Kumar, S., Dharmender, & Mahto S. (2017). Influence of rectangular and parabolic irregularities on the propagation behavior of transverse wave in a piezoelectric layer: A comparative approach, *Multidiscipline Modeling in Materials and Structures*, 13(2), 188-216.
- 100.Singh, A. K., Das, A., Mistri, K. C. & Chattopadhyay, A. (2017). Green's function approach to study the propagation of SH-wave in piezoelectric layer influenced by a point source, *Mathematical Methods in the Applied Sciences*, 40(13), 4771-4784
- 101.Saha, S., Chattopadhyay A., Mistri, K. C. & Singh, A. K. (2017). Influence of yielding base and rigid base on propagation of Rayleigh-type wave in a viscoelastic layer of Voight type, *Sadhana*, 42(9),1459-1471.

- 102. Singh, A. K., Negi, A., Chattopadhyay, A. & Verma, A. K. (2017). Analysis of different types of heterogeneity and induced stresses in an initially stressed irregular transversely isotropic rock medium subjected to dynamic load, *International Journal of Geomechanics*, 17(8), 04017022.
- 103.Kaur, T., Sharma, S. K., & Singh, A. K. (2017). Shear wave propagation in vertically heterogeneous viscoelastic layer over a micropolar elastic half-space, *Mechanics of Advanced Materials and Structures*, 24(2), 149-156.
- 104.Singh, A. K., Mistri, K. C., Kaur, T. & Chattopadhyay A. (2017). Effect of undulation on SH-wave propagation in corrugated magneto-elastic transversely isotropic layer, *Mechanics of Advanced Materials and Structures*, 24(3), 200-211.
- 105.Singh, A. K., Das, A., Mistri, K. C., Nimishe, S., & Koley, S. (2017). Effect of corrugation on the dispersion of Love-type wave in a layer with monoclinic symmetry, overlying an initially stressed transversely isotropic halfspace. *Multidiscipline Modeling in Materials and Structures* 13(2), 308-325.
- 106.Kumari, N., Chattopadhyay, A., Kumar, S., & Singh, A. K. (2017). Propagation of SH-waves in two anisotropic layers bonded to an isotropic half-space under gravity, *Waves in Random and Complex Media*, 27(2), 195-212.
- 107. Singh, A. K., Lakshman, A., & Chattopadhyay, A. (2017). Influence of corrugated boundary surface and reinforcement of fibre-reinforced layer on propagation of torsional surface wave, *Journal of Vibration and Control*, 23(9), 1417-1436.
- 108. Singh, A. K., Mistri, K. C. & Das, A. (2017). Propagation of SH-wave in a corrugated viscous sandy layer sandwiched between two elastic half-spaces, *Waves in Random and Complex media* 27(2), 213-240.
- 109.Kumari, N., Chattopadhyay, A., Singh, A. K. & Sahu, S. A. (2017). Magnetoelastic shear wave propagation in prestressed anisotropic media under gravity, *Acta Geophysica*, 65(1), 1-17.
- 110.Singh, A. K., Parween, Z., Das, A. & Chattopadhyay, A. (2017). Influence of loosely-bonded sandwiched initially stressed visco-elastic layer on torsional wave propagation, *Journal of Mechanics*, 33(3), 351-368.
- 111. Mistri, K. C., **Singh, A. K.**, Yadav, R. P. & Chattopadhyay, A. (2017). Stresses due to moving load on the surface of an irregular magneto-elastic monoclinic half-space under hydrostatic initial stress, *Mechanics of Advanced Materials and Structures*, 24(13), 1-15.
- 112. Singh, A. K., Chaki, M. S., Hazra, B., & Mahto, S. (2017). Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure. *Structural engineering and mechanics: An international journal*, 62(3), 325-344.
- 113.Kaur, T., Sharma, S. K., Singh, A. K. & Chaki, M. S. (2016). Moving load response on the stresses produced in an irregular microstretch substrate, *Structural Engineering and Mechanics, An International Journal*, 60(2), 175–191.
- 114. Singh, A. K. & Lakshman, A. (2016). Effect of loosely bonded undulated boundary surfaces of doubly layered halfspace on the propagation of torsional wave, *Mechanics Research Communication*, 73, 91-106.
- 115. Singh, A. K., Das, A., Lakshman, A. & Chattopadhyay, A. (2016). Effect of corrugation and reinforcement on the dispersion of SH-wave propagation in corrugated poroelastic layer lying over a fibre-reinforced half-space, *Acta Geophysica*, 64(5), 1340-1369.
- 116.Singh, A. K., Mistri, K. C. & Das, A. (2016). Propagation of Love-type wave in a corrugated fibre-reinforced layer, *Journal of Mechanics*, 32(6), 693-708.
- 117.Singh, A. K., Parween, Z., Lakshman A. & Chattopadhyay, A. (2016) Effect of Linear and exponential heterogeneity on the dynamic response of a moving load in an irregular isotropic half-space: A comparative study, *Geomechanics and Geoengineering An International Journal*, 11(3), 201-218.
- 118.Kaur, T., Sharma, S. K. & Singh, A. K. (2016). Effect of reinforcement, gravity and liquid loading on Rayleigh-type wave propagation, *Meccanica*, 51(10), 2449-2458
- 119.Kaur, T., Sharma, S. K. & Singh, A. K. (2016). Dynamic response of a moving load on a micropolar half-space with irregularity, *Applied Mathematical Modelling*, 40(5), 3535-3549.
- 120.Singh, A. K., Yadav, R. P., Kumar, S., & Chattopadhyay, A. (2016). Propagation of crack in a pre-stressed inhomogeneous poroelastic medium influenced by shear wave. *Engineering Fracture Mechanics*, 154, 191-206.
- 121.Singh, A. K., Lakshman, A. & Chattopadhyay, A. (2016). Effect of irregularity and anisotropy on the dynamic response due to a shear load moving on an irregular orthotropic half-space under influence of gravity, *Multidiscipline Modeling in Materials and Structures*, 12(1), 194-214
- 122. Singh, A. K., Yadav, R. P., Mistri, K. C. & Chattopadhyay, A. (2016). Influence of anisotropy, porosity and initial stresses on crack propagation due to Love-type wave in a poroelastic medium, *Fatigue & Fracture of Engineering Materials & Structures*, 39(5), 624-636.
- 123. Singh, A. K., Kumari, N., Chattopadhyay, A. & Sahu, S. A. (2016). Smooth moving punch in an initially stressed transversely isotropic magnetoelastic medium due to shear wave, *Mechanics of Advanced Materials and Structures*, 23(7), 774-783.
- 124. Singh, A. K., Parween, Z., & Kumar, S. (2016). Love-type wave propagation in a corrugated piezoelectric structure. *Journal of Intelligent Material Systems and Structures*, 27(19), 2616–2632.

- 125.Kumari, N., Sahu, S. A., Chattopadhyay, A., & Singh, A. K. (2016). Influence of heterogeneity on the propagation behavior of Love-Type waves in a layered isotropic structure. *International Journal of Geomechanics*, 16(2), 04015062.
- 126.Kaur, T., Singh, A. K., Chattopadhyay, A., & Sharma, S. K. (2016). Dynamic response of normal moving load on an irregular fiber-reinforced half-space. *Journal of Vibration and Control*, 22(1), 77-88.
- 127. Singh, A. K., Lakshman, A., & Chattopadhyay, A. (2016). The plane waves at the edge of a uniformly pre-stressed fiber-reinforced plate. *Journal of Vibration and Control*, 22(10), 2530-2541.
- 128. Singh, A. K., Lakhsman, A., & Chattopadhyay, A. (2016). Effect of internal friction and the Lamé ratio on Stoneley wave propagation in viscoelastic media of order 1. *International Journal of Geomechanics*, 16(4), 04015090.
- 129. Singh, A. K., Lakhsman, A., & Chattopadhyay, A. (2016). Effect of heterogeneity, irregularity, and reinforcement on the stress produced by a moving load on a Self-Reinforced composite Half-Space. *International Journal of Geomechanics*, 16(3) 04015066.
- 130.Singh, A. K., Mistri, K., & Chattopadhyay, A. (2015). Normal load moving on magneto-elastic transversely isotropic half-space with irregular and hydrostatic initial stress. *Journal of Vibration and Control*, 23(8), 1354–1373.
- 131.Singh, A. K., Das, A., Parween, Z., & Chattopadhyay, A. (2015). Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space. Proceedings of the Indian Academy of Sciences. *Journal of Earth System Science*, 124(7), 1457–1474.
- 132. Singh, A. K., Das, A., Kumar, S., & Chattopadhyay, A. (2015). Influence of corrugated boundary surfaces, reinforcement, hydrostatic stress, heterogeneity and anisotropy on Love-type wave propagation. *Meccanica*, 50(12), 2977–2994.
- 133.Singh, A. K., Das, A., Chattopadhyay, A., & Dhua, S. (2015). Dispersion of shear wave propagating in vertically heterogeneous double layers overlying an initially stressed isotropic half-space. *Soil Dynamics and Earthquake Engineering*, 69, 16–27.
- 134. Singh, A. K., Parween, Z., Chatterjee, M., & Chattopadhyay, A. (2015). Love-type wave propagation in a prestressed viscoelastic medium influenced by smooth moving punch. *Waves in Random and Complex Media*, 25(2), 268–285.
- 135. Singh, A. K., Kumar, S., & Chattopadhyay, A. (2015). Love-type wave propagation in a piezoelectric structure with irregularity. *International Journal of Engineering Science*, 89, 35–60.
- 136.Dhua, S., Singh, A. K., & Chattopadhyay, A. (2015). Propagation of torsional wave in a composite layer overlying an anisotropic heterogeneous half-space with initial stress. *Journal of Vibration and Control*, 21(10), 1987–1998.
- 137.Singh, A. K., Kumar, S., & Chattopadhyay, A. (2015). Propagation of torsional waves in a fiber composite layer lying over an initially stressed viscoelastic half-space. *International Journal of Geomechanics*, 16(1), 04015014.
- 138. Singh, A. K., Kumar, S., & Chattopadhyay, A. (2014). Effect of smooth moving punch in an initially stressed monoclinic magnetoelastic crystalline medium due to shear wave propagation. *Journal of Vibration and Control*, 22(11), 2719–2.
- 139. Singh, A. K., Kumar, S., & Chattopadhyay, A. (2014). Effect of irregularity and heterogeneity on the stresses produced due to a normal moving load on a rough monoclinic half-space. *Meccanica*, 49(12), 2861–2878.
- 140. Chattopadhyay, A., & Singh, A. K. (2014). Propagation of a crack due to magnetoelastic shear waves in a self-reinforced medium. *Journal of Vibration and Control*, 20(3), 406–420.
- 141. Chattopadhyay, A., Singh, A. K., & Dhua, S. (2014). Effect of Heterogeneity and Reinforcement on Propagation of a Crack due to Shear Waves. *International Journal of Geomechanics*, 14(4) 04014013
- 142. Chattopadhyay, A., Gupta, S., Sahu, S. A., & Singh, A. K. (2013). Dispersion of horizontally polarized shear waves in an irregular non-homogeneous self-reinforced crustal layer over a semi-infinite self-reinforced medium. *Journal of Vibration and Control*, 19(1), 109–119.
- 143. Chattopadhyay, A., & Singh, A. K. (2012). Propagation of magnetoelastic shear waves in an irregular self-reinforced layer. *Journal of Engineering Mathematics*, 75(1), 139–155.
- 144. Chattopadhyay, A., Gupta, S., Sahu, S. A., & Singh, A. K. (2012). Torsional Surface Waves in a Self-Reinforced Medium over a Heterogeneous Half Space. *International Journal of Geomechanics*, 12(2), 193–197.
- 145. Chattopadhyay, A., & Singh, A. K. (2012). G-type seismic waves in fibre reinforced media. *Meccanica*, 47(7), 1775–1785.
- 146. Chattopadhyay, A., Sahu, S. A., & Singh, A. K. (2011). Dispersion of G-type seismic wave in magnetoelastic self reinforced layer. *International Journal of Applied Mathematics and Mechanics*, 8(9), 79-98.
- 147. Chattopadhyay, A., Gupta, S., Sahu, S. A., & Singh, A. K. (2011). Dispersion equation of magnetoelastic shear waves in irregular monoclinic layer. *Applied Mathematics and Mechanics*, 32(5), 571–586.
- 148. Chattopadhyay, A., & Singh, A. K. (2011). Effect of point source and heterogeneity on the propagation of magnetoelastic shear wave in a monoclinic medium. *International Journal of Engineering, Science and Technology*, 3(2), 68-83.

- 149. Chattopadhyay, A., Gupta, S., & Singh, A. K. (2010). The dispersion of shear wave in multilayered magnetoelastic self-reinforced media. *International Journal of Solids and Structures*, 47(9), 1317–1324.
- 150. Chattopadhyay, A., Gupta, S., Singh, A. K., & Sahu, S. A. (2009). Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. *International Journal of Engineering, Science and Technology*, 1(1), 228-244.