Faculty details

Prof.Jhasaketan Nayak

Designation: Associate Professor

Department: Physics

Email: nayakj[at]iitism[dot]ac[dot]in

Contact Number:

Office Number: +91-326-223-5121

Personal Page: Under Construction

Research Interest: Oxide Semiconductor Nanostructures For Applications In Solar Cells, Photocatalysis And Sensors

Teaching

Details of the courses taught

 

Sl. No.

Name and code of the course with

L T P

Semester & Discipline

Session

1 Introduction to Quantum Devices (PHO 401) (3 0 0) 6th B. Tech. (Eng. Phys.) Winter 2024 - 25
2 Sensors and Transducers (PHO 300) (3 0 0) 4th B. Tech. (Eng. Physics) Monsoon 2024-25

 

Academics

Position

Awards and Honors

Publications

Books Published

 

List Of Research Publications (only in Peer-reviewed Journals)

Bibliography

[1]      V. Zimba, N. Meghana, J. Nayak, Visible light enabled photocapacitive charging and glucose sensing properties of hydrothermally synthesized WO3/CdS nanocomposites, J. Mater. Sci. 59 (2024) 9303–9318. https://doi.org/10.1007/s10853-024-09775-2.

[2]      A. Chattopadhyay, B. Mohanty, J. Nayak, A study of structural, morphological, optical and humidity sensing properties of CaCu3Ti4O12 powders synthesized by combustion method, Mater. Today Commun. 33 (2022) 104196. https://doi.org/10.1016/j.mtcomm.2022.104196.

[3]      A. Chattopadhyay, J. Nayak, Hafnium oxide nanoparticles synthesized via sol-gel route for an efficient detection of volatile organic compounds at room temperature, Mater. Sci. Semicond. Process. 139 (2022) 106336. https://doi.org/10.1016/j.mssp.2021.106336.

[4]      A. Chattopadhyay, J. Nayak, High temperature sintering induced acetone gas sensing properties of sol-gel synthesized HfO2 nanocrystals, J. Sol-Gel Sci. Technol. 103 (2022) 791–798. https://doi.org/10.1007/s10971-022-05900-2.

[5]      A. Chattopadhyay, J. Nayak, Improvement of humidity sensing performance and dielectric response through pH variation in CaCu3Ti4O12 ceramics, Sensors Actuators A Phys. 341 (2022) 113603. https://doi.org/10.1016/j.sna.2022.113603.

[6]      A. Chattopadhyay, J. Nayak, Enhanced room temperature sensitivity of undoped HfO2 nanoparticles towards formaldehyde gas, Appl. Phys. A. 127 (2021) 904. https://doi.org/10.1007/s00339-021-05072-w.

[7]      B. Mohanty, J. Nayak, Band gap narrowing and prolongation of carrier lifetime in solution-processed CeO2/CdS thin films for application as photoanodes in quantum dot sensitized solar cells, Ceram. Int. 47 (2021) 26144–26156. https://doi.org/10.1016/j.ceramint.2021.06.022.

[8]      K. Sahoo, B. Mohanty, A. Biswas, J. Nayak, Role of hexamethylenetetramine in ZnO-cellulose nanocomposite enabled UV and humidity sensor, Mater. Sci. Semicond. Process. 105 (2020) 104699. https://doi.org/10.1016/j.mssp.2019.104699.

[9]      B. Mohanty, K. Sahoo, J. Nayak, A two-step hydrothermal synthesis of CeO2/CdS nanocomposite for photovoltaic application: An investigation on surface morphology, structure, optical and electrical properties, Mater. Res. Express. 6 (2019) 0950c5. https://doi.org/10.1088/2053-1591/ab34e1.

[10]    B. Mohanty, J. Nayak, Parameters dependent studies of structural, optical and electrical properties of CeO2 nanoparticles prepared via facile one-pot hydrothermal technique, Mater. Res. Express. 4 (2017) aa95e6. https://doi.org/10.1088/2053-1591/aa95e6.

[11]    B. Mohanty, A. Chattopadhyay, J. Nayak, Band gap engineering and enhancement of electrical conductivity in hydrothermally synthesized CeO2 ̶ PbS nanocomposites for solar cell applications, J. Alloys Compd. 850 (2021) 156735. https://doi.org/10.1016/j.jallcom.2020.156735.

[12]    A.K. Mohapatra, J. Nayak, Anatase TiO2 powder: Synthesis, characterization and application for photocatalytic degradation of 3, 4-dihydroxy benzoic acid, Optik (Stuttg). 156 (2018) 268–278. https://doi.org/10.1016/j.ijleo.2017.10.141.

[13]    K. Sahoo, A. Biswas, J. Nayak, Effect of synthesis temperature on the UV sensing properties of ZnO-cellulose nanocomposite powder, Sensors Actuators, A Phys. 267 (2017) 99–105. https://doi.org/10.1016/j.sna.2017.10.001.

[14]    K. Sahoo, B. Mohanty, J. Nayak, Enhanced photoresponse characteristics of ZnO polymer nanocomposite: effect of variation of surface density of nanocrystals, J. Mater. Sci. Mater. Electron. 30 (2019) 19664–19674. https://doi.org/10.1007/s10854-019-02341-6.

[15]    J. Nayak, A. K. Mohapatra, H. Kim,  Effects of Surface Carbon on the Visible-light Photocatalytic Activity of Nitrogen Doped TiO 2 -C Nanocomposite Powder , Curr. Nanosci. 12 (2015) 365–371. https://doi.org/10.2174/1573413712666151123190258.

[16]    J. Nayak, K. Prabakar, J.W. Park, H. Kim, Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO 2 nanorod thin films, Electrochim. Acta. 65 (2012) 44–49. https://doi.org/10.1016/j.electacta.2012.01.012.

[17]    J. Nayak, K. Prabakar, J.W. Park, H. Kim, Polyethylene glycol assisted direct deposition of rutile TiO2 nanocrystals on transparent conducting oxide substrate for dye-sensitized solar cell applications, J. Sol-Gel Sci. Technol. 66 (2013) 378–386. https://doi.org/10.1007/s10971-013-3020-y.

[18]    J. Nayak, J. W. Park, H. Kim, Effect of Annealing on the Ultraviolet Sensing Properties of the Chemically Synthesized n-Type Nanodots of ZnO, Micro Nanosyst. 4 (2012) 8–13. https://doi.org/10.2174/1876402911204010008.

[19]    J. Nayak, Enhanced light to electricity conversion efficiency of CdS-ZnO composite nanorod based electrochemical solar cell, Mater. Chem. Phys. 133 (2012) 523–527. https://doi.org/10.1016/j.matchemphys.2012.01.078.

[20]    J. Nayak, M.K. Son, J.K. Kim, S.K. Kim, J.H. Lee, H.J. Kim, Enhanced photocurrent from CdS sensitized ZnO nanorods, J. Electr. Eng. Technol. 7 (2012) 965–970. https://doi.org/10.5370/JEET.2012.7.6.965.

[21]    J. Nayak, H. Lohani, T.K. Bera, Observation of catalytic properties of CdS-ZnO composite nanorods synthesized by aqueous chemical growth technique, Curr. Appl. Phys. 11 (2011) 93–97. https://doi.org/10.1016/j.cap.2010.06.025.

[22]    J. Nayak, J. Kasuya, A. Watanabe, S. Nozaki, Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed layers of ZnO, J. Phys. Condens. Matter. 20 (2008) 1–5. https://doi.org/10.1088/0953-8984/20/19/195222.

[23]    J. Nayak, S.N. Sahu, J. Kasuya, S. Nozaki, Effect of substrate on the structure and optical properties of ZnO nanorods, J. Phys. D. Appl. Phys. 41 (2008) 1–6. https://doi.org/10.1088/0022-3727/41/11/115303.

[24]    J. Nayak, S. Kimura, S. Nozaki, H. Ono, K. Uchida, Yellowish-white photoluminescence from ZnO nanoparticles doped with Al and Li, Superlattices Microstruct. 42 (2007) 438–443. https://doi.org/10.1016/j.spmi.2007.04.070.

[25]    J. Nayak, S. Kimura, S. Nozaki, Enhancement of the visible luminescence from the ZnO nanocrystals by Li and Al co-doping, J. Lumin. 129 (2009) 12–16. https://doi.org/10.1016/j.jlumin.2008.07.005.

[26]    J. Nayak, S.N. Sahu, J. Kasuya, S. Nozaki, CdS-ZnO composite nanorods: Synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid, Appl. Surf. Sci. 254 (2008) 7215–7218. https://doi.org/10.1016/j.apsusc.2008.05.268.

[27]    J. Nayak, R. Mythili, M. Vijayalakshmi, S.N. Sahu, Size quantization effect in GaAs nanocrystals, Phys. E Low-Dimensional Syst. Nanostructures. 24 (2004) 227–233. https://doi.org/10.1016/j.physe.2004.04.035.

[28]    J. Nayak, S. Varma, D. Paramanik, S.N. Sahu, Composition and optical characteristics of electrochemically-synthesized GaAs nanocrystals, Int. J. Nanosci. 3 (2004) 281–292. https://doi.org/10.1142/S0219581X04002073.

[29]    J. Nayak, S.N. Sahu, Orthorhombic-phase GaAs nanoparticles prepared by an electrochemical technique, Appl. Surf. Sci. 229 (2004) 97–104. https://doi.org/10.1016/j.apsusc.2004.01.051.

[30]    J. Nayak, S.N. Sahu, S. Nozaki, GaAs nanocrystals: Structure and vibrational properties, Appl. Surf. Sci. 252 (2006) 2867–2874. https://doi.org/10.1016/j.apsusc.2005.04.031.

[31]    J. Nayak, S.N. Sahu, Structure and optical properties of polyvinyle alcohol capped GaAs nanocrystals, Phys. E Low-Dimensional Syst. Nanostructures. 30 (2005) 107–113. https://doi.org/10.1016/j.physe.2005.07.013.

[32]    J. Nayak, S.N. Sahu, Electrical characteristics of GaAs nanocrystalline thin film, Solid. State. Electron. 50 (2006) 164–169. https://doi.org/10.1016/j.sse.2005.12.011.

[33]    J. Nayak, S.N. Sahu, Effect of synthesis temperature on the structure and optical properties of electro-chemically grown GaAs nanocrystals, Phys. E Low-Dimensional Syst. Nanostructures. 41 (2008) 92–95. https://doi.org/10.1016/j.physe.2008.06.010.

[34]    J. Nayak, S.N. Sarangi, A.K. Dash, S.N. Sahu, Observation of semiconductor to insulator transition in Sb/Sb2O3 clusters synthesized by low-energy cluster beam deposition with different conditions, Vacuum. 81 (2006) 366–372. https://doi.org/10.1016/j.vacuum.2006.06.003.

[35]    J. Nayak, S.N. Sahu, Synthesis and characterization of Sb2O3 cluster assembled nanostructured thin films, Mater. Lett. 61 (2007) 1388–1391. https://doi.org/10.1016/j.matlet.2006.07.037.

[36]    J. Nayak, S.N. Sahu, Study of structure and optical properties of GaAs nanocrystalline thin films, Appl. Surf. Sci. 182 (2001) 407–412. https://doi.org/10.1016/S0169-4332(01)00460-3.

Projects & Activities

Guidance

Details of the PhD degrees awarded

 

Sl. No.

Thesis title

Name and admission number of the research scholar(s)

Month and year of the award of the degree

1

Synthesis of Oxide based high-k electro-ceramic nanoparticles for application in sensors

Anamitra Chattopadhyay

17DR000455

May 2023

2

Synthesis of Zinc Oxide-Cellulose Nanocomposite for Application as Ultraviolet Light Sensor

Karunakar Sahoo

2014DR0268

September 2021

3

Synthesis of Metal Oxide Semiconductor Nanocomposites for Photovoltaic Applications

Biswajyoti Mohanty

2015 DR 0211

June 2021

4

Synthesis of Nanostructured Metal Oxide Semiconductors and their Applications in UV-Vis Photocatalysis

Asish Kumar Mohapatra, 2014 DR0059

Dec. 2018